These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lead and aluminum bonding in Pb-AI metaphosphate glasses.
    Author: Tsuchida JE, Schneider J, Pizani PS, Oliveira SL.
    Journal: Inorg Chem; 2008 Jan 21; 47(2):690-8. PubMed ID: 18081273.
    Abstract:
    The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb(PO(3))(2).xAI(PO(3))(3) with 0 < or = x < or = 1 were analyzed to determine the effect of the substitution of Pb by AI on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)AI, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for AI decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent AI-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in AI. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AIO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AIO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AIO(n) polyhedra. There is no corner sharing of O between AIO(n) and PbO(n) polyhedra nor between AIO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-AI and Ca-AI metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.
    [Abstract] [Full Text] [Related] [New Search]