These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Author: Moore GA, Martin SA.
    Journal: J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190.
    Abstract:
    Four strains of the ruminal bacterium Streptococcus bovis were surveyed for phosphoenolpyruvate (PEP) and ATP-dependent phosphorylation of glucose and the nonmetabolizable glucose analog 2-deoxyglucose. All four strains had high rates of glucose phosphorylation with either phosphoryl donor, but 2-deoxyglucose activity was much higher in the presence of PEP. These results provide evidence for a PEP-dependent glucose phosphotransferase system in these bacteria. Mannose and 2-deoxyglucose inhibited PEP-dependent phosphorylation of glucose by S. bovis JB1 by 50 and 38%, respectively, whereas alpha-methylglucoside had little effect. Mannose was a competitive inhibitor of PEP-dependent phosphorylation of glucose with an inhibition constant of 2.8 mM, and PEP-dependent activity in cells grown in batch culture was optimal at pH 7.2. When S. bovis JB1 was grown in continuous culture, PEP-dependent phosphorylation of glucose and 2-deoxyglucose was highest in cells grown at a dilution rate of .10/h and at low glucose concentrations. Phosphoenolpyruvate-dependent activity was optimum at a growth pH of 5.0 for cells grown in medium that contained less than 6.0 g/liter of glucose. These data indicate that PEP-dependent glucose phosphotransferase system activity can be influenced depending on the growth conditions used to culture S. bovis. Furthermore, these results suggest that environmental conditions within the rumen will affect how glucose is transported by S. bovis.
    [Abstract] [Full Text] [Related] [New Search]