These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite--implications for water purification. Author: Zhou Q, He HP, Zhu JX, Shen W, Frost RL, Yuan P. Journal: J Hazard Mater; 2008 Jun 15; 154(1-3):1025-32. PubMed ID: 18082948. Abstract: HDTMA+-pillared montmorillonites were obtained by pillaring different amounts of the surfactant hexadecyltrimethylammonium bromide (HDTMAB) into sodium montmorillonite (Na-Mt) in an aqueous solution. The optimum conditions and batch kinetics of sorption of p-nitrophenol from aqueous solutions are reported. The solution pH had a very important effect on the sorption of p-nitrophenol. The maximum p-nitrophenol absorption/adsorption occurs when solution pH (7.15-7.35) is approximately equal to the pKa (7.16) of the p-nitrophenol ion deprotonation reaction. X-ray diffraction analysis showed that surfactant cations had been pillared into the interlayer and the p-nitrophenol affected the arrangement of surfactant. With the increased concentration of surfactant cations, the arrangement of HDTMA+ within the clay interlayer changes and the sorption of p-nitrophenol increases. HDTMA+-pillared montmorillonites are more effective than Na-Mt for the adsorption of p-nitrophenol from aqueous solutions. The Langmuir, Freundlich and dual-mode sorption were tested to fit the sorption isotherms.[Abstract] [Full Text] [Related] [New Search]