These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of aryl hydrocarbon receptor expression and function by glucocorticoids in mouse hepatoma cells. Author: Bielefeld KA, Lee C, Riddick DS. Journal: Drug Metab Dispos; 2008 Mar; 36(3):543-51. PubMed ID: 18086832. Abstract: The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates most biological responses to 2,3, 7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related aromatic hydrocarbons. Although the role of the AHR in control of drug metabolism and endocrine disruption is partly understood, we know little about the regulation of the AHR itself by endocrine factors. Our work with hypophysectomized rats suggested that hepatic AHR protein level is positively regulated by pituitary-dependent factors. A current hypothesis is that adrenal glucocorticoids elevate AHR expression and enhance responsiveness to AHR agonists. Dexamethasone (DEX) at concentrations that activate the glucocorticoid receptor (GR) increased AHR mRNA, protein, and TCDD-binding by approximately 50% in Hepa-1 mouse hepatoma cells. This response was blocked by the GR antagonist 17beta-hydroxy-11beta-[4-dimethylamino phenyl]-17alpha-[1-propynyl]estra-4,9-dien-3-one (RU486), suggesting GR involvement. This small magnitude increase in AHR levels was functionally significant; pretreatment of Hepa-1 cells with DEX caused a 75% increase in the maximum induction of an AHR-activated luciferase reporter plasmid by TCDD. A luciferase reporter under control of the proximal 2.5 kilobases of the mouse Ahr 5'-flanking region and promoter was induced approximately 2.5-fold by DEX when cotransfected with a mouse GR expression plasmid. This is the first demonstration that glucocorticoids increase AHR levels in hepatoma cells via a GR-dependent transcriptional mechanism, suggesting a novel aspect of cross-talk between the AHR and the GR.[Abstract] [Full Text] [Related] [New Search]