These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Restoration of CREB function ameliorates cisplatin cytotoxicity in renal tubular cells. Author: Arany I, Herbert J, Herbert Z, Safirstein RL. Journal: Am J Physiol Renal Physiol; 2008 Mar; 294(3):F577-81. PubMed ID: 18094030. Abstract: We have shown that mouse proximal tubule cells (TKPTS) survive H(2)O(2) stress by activating the cAMP-responsive element binding protein (CREB)-mediated transcription via the canonical EGFR-Ras/ERK pathway. By contrast, cisplatin activates EGFR/Ras/ERK signaling in TKPTS cells yet promotes cell death rather than survival. We now demonstrate that the cisplatin-induced activated EGFR/Ras/ERK signaling cascade fails to activate CREB-mediated transcription even in the presence of phosphorylated CREB. CREB-mediated transcription as well as survival was restored by the histone deacetylase (HDAC) inhibitor trichostatine A (TSA), an effective chemotherapeutic agent. Similar to severe oxidant stress, TSA-mediated survival could be abrogated by inhibition of CREB-mediated transcription. These studies confirm the importance of CREB-mediated transcription in the survival of renal cells subjected to either oxidant- or cisplatin-induced stress. The use of cisplatin and TSA in combined chemotherapy protocols may be an effective strategy to enhance cancer cell death and limit nephrotoxicity.[Abstract] [Full Text] [Related] [New Search]