These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of nociceptin/orphanin FQ and the pseudopeptide [Phe1Psi(CH2NH)Gly2]-nociceptin(1-13)-NH2 and their interaction with classic opioids in the modulation of thermonociception in the land snail Helix aspersa.
    Author: Miller-Pérez C, Sánchez-Islas E, Pellicer F, Rodríguez-Manzo G, Cruz SL, León-Olea M.
    Journal: Eur J Pharmacol; 2008 Feb 26; 581(1-2):77-85. PubMed ID: 18096155.
    Abstract:
    The role in nociception of nociceptin/orphanin FQ (N/OFQ) and its receptor, the opioid receptor-like 1 (NOP), remains unclear because this peptide has been implicated in both suppression and enhancement of nociception. The present work characterises the effects of N/OFQ and the NOP receptor antagonist, the pseudopeptide [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) (Phe(1)Psi), on thermonociception in the snail Helix aspersa using the hot plate assay. Additionally, the possible interaction of each of these compounds with morphine or dynorphin A(1-17) and naloxone was studied. Compounds were administered into the hemocoel cavity of H. aspersa and the latency to the aversive withdrawal behaviour recorded. Dose-response and time course curves were done. N/OFQ and naloxone produced a similar dose-dependent pronociceptive effect; however, N/OFQ reached its peak effect earlier and was 30 times more potent than naloxone. [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) and the opioid agonists, morphine and dynorphin A(1-17) produced antinociception with a similar efficacy, but [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) reached its peak effect more rapidly and lasted longer than that of dynorphin A(1-17) and morphine. [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) was 50 times less potent than dynorphin A(1-17), but 30 times more potent than morphine. N/OFQ significantly reduced morphine and dynorphin A(1-17)-induced antinociception. Combined administration of low doses of [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) and morphine or dynorphin A(1-17) produced a potent antinociceptive effect. Sub-effective doses of naloxone and N/OFQ also synergised to produce pronociception. Data suggest that these two opioid classes regulate nociception through parallel systems. The H. aspersa model appears as a valuable experimental preparation to continue the study of these opioid receptor systems.
    [Abstract] [Full Text] [Related] [New Search]