These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of the cytoskeleton in the effect of PGE2 on ion transport in the rat distal colon. Author: Chalfoun AT, Kreydiyyeh SI. Journal: Prostaglandins Other Lipid Mediat; 2008 Feb; 85(1-2):58-64. PubMed ID: 18096422. Abstract: This work aimed at studying the effect of PGE2 on water and chloride absorption from the rat distal colon and at investigating the involvement of the cytoskeleton in the modulation of colonic transporters. PGE2 increased significantly net water and chloride absorption. It increased also the activity of the Na+K+-ATPase and the expression of the Na+K+2Cl- cotransporter. The increase in pump activity was ascribed to its phosphorylation by PKA or PKC when activated upon binding of PGE2 to its receptors, and was deemed responsible for the increase in Cl- absorption. Cytochalasin B (CytoB), a disrupter of microfilaments, decreased net water and chloride absorption in presence or absence of PGE2. Furthermore it down-regulated both pump and cotransporter, and lowered Na+K+-ATPase activity. It was suggested that an intact actin cytoskeleton is required for the basal and the PGE2-elicited trafficking of both transporters. On the other hand, colchicine, an inhibitor of microtubule polymerization, had no effect on the absorption of water and chloride but abrogated the stimulatory effect of PGE2. Colchicine exerted a similar effect to that of cytochlasin on the expression of both pump and cotransporter in presence or absence of PGE2 except for the basal activity of the pump which was not altered by microtubule disruption. It was concluded that both microfilament and microtubular networks are involved in the basal and PGE2-elicited increase in colonic ion absorption.[Abstract] [Full Text] [Related] [New Search]