These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN-gamma-dependent responses induced by vaccination and/or challenge infection.
    Author: Petritus PM, Burns JM.
    Journal: J Immunol; 2008 Jan 01; 180(1):444-53. PubMed ID: 18097046.
    Abstract:
    Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.
    [Abstract] [Full Text] [Related] [New Search]