These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Author: Kneller EA, van Keken PE. Journal: Nature; 2007 Dec 20; 450(7173):1222-5. PubMed ID: 18097407. Abstract: Shear-wave splitting measurements above the mantle wedge of the Mariana and southern Andean subduction zones show trench-parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic anisotropy may be caused by three-dimensional flow associated with along-strike variations in slab geometry. The Mariana and Andean subduction systems are associated with the largest along-strike variations of slab geometry observed on Earth and are ideal for testing the link between slab geometry and solid-state creep processes in the mantle. Here we show, with fully three-dimensional non-newtonian subduction zone models, that the strong curvature of the Mariana slab and the transition to shallow slab dip in the Southern Andes give rise to strong trench-parallel stretching in the warm-arc and warm-back-arc mantle and to abrupt rotations in stretching directions that are accompanied by strong trench-parallel stretching. These models show that the patterns of shear-wave splitting observed in the Mariana and southern Andean systems may be caused by significant three-dimensional flow induced by along-strike variations in slab geometry.[Abstract] [Full Text] [Related] [New Search]