These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Poly(adenosine diphosphate ribose) polymerase activity and nicotinamide adenine dinucleotide in differentiating cardiac muscle.
    Author: Claycomb WC.
    Journal: Biochem J; 1976 Feb 15; 154(2):387-93. PubMed ID: 180977.
    Abstract:
    Poly(ADP-ribose) polymerase activity in nuclei isolated from differentiating cardiac muscle of the rat has been characterized and its activity measured during development. Optimum enzyme activity is observed at pH 8.5. Poly(ADP-ribose) polymerase is inhibited by ATP, thymidine, nicotinamide, theophylline, 3-isobutyl-1-methylxanthine and caffeine and stimulated by actinomycin D. The activity measured under optimal assay conditions increases during differentiation of cardiac muscle and is inversely related to the rate of DNA synthesis and to the activities of DNA polymerase alpha and thymidine kinase. When DNA synthesis and the activity of DNA polymerase alpha are inhibited in cardiac muscle of the 1-day-old neonatal rat by dibutyryl cyclic AMP or isoproterenol, the specific activity of poly(ADP-ribose) polymerase measured in isolated nuclei is increased. The concentration of NAD+ in cardiac muscle increases during postnatal development. In the adult compared with the 1-day-old neonatal rat the concentration of NAD+ relative to fresh tissue weight, DNA or protein increased 1.7-fold, 5.2-fold or 1.4-fold respectively. The concentration of NAD+ in cardiac muscle of the 1-day-old neonatal rat can be increased by approx. 20% by dibutyryl cyclic AMP. These data suggest that NAD+ and poly(ADP-ribose) polymerase may be involved with the repression of DNA synthesis and cell proliferation in differentiating cardiac muscle.
    [Abstract] [Full Text] [Related] [New Search]