These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Flash photolysis-electron spin resonance studies of photosystem I. A fast reduction of component of P-700+.
    Author: Warden JT.
    Journal: Biochim Biophys Acta; 1976 Jul 09; 440(1):89-97. PubMed ID: 181092.
    Abstract:
    A 300 mus decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 mus actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375 +/- 10 mV (pH = 7.5). These data suggest the assignment of the 300-mus decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171-1174 (1971)).
    [Abstract] [Full Text] [Related] [New Search]