These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo.
    Author: Lumsden A, Sprawson N, Graham A.
    Journal: Development; 1991 Dec; 113(4):1281-91. PubMed ID: 1811942.
    Abstract:
    A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were labelled by the vital dye. Analysis of whole-mount embryos after 1-2 days further development, using conventional and intensified video fluorescence microscopy, revealed the pathways of crest cells migrating from mesencephalic and rhombencephalic levels of the neuraxis into the subjacent branchial region. The patterns of crest emergence and emigration correlate with the segmented disposition of the rhombencephalon. Branchial arches 1, 2 and 3 are filled by crest cells migrating from rhombomeres 2, 4 and 6 respectively, in register with the cranial nerve entry/exit points in these segments. The three streams of ventrally migrating cells are separated by alternating regions, rhombomeres 3 and 5, which release no crest cells. Rostrally, rhombomere 1 and the caudal mesencephalon also contribute crest to the first arch, primarily to its upper (maxillary) component. Both r3 and r5 are associated with enhanced levels of cell death amongst cells of the dorsal midline, suggesting that crest may form at these levels but is then eliminated. Organisation of the branchial region is thus related by the dynamic process of neural crest immigration to the intrinsic mechanisms that segment the neuraxis.
    [Abstract] [Full Text] [Related] [New Search]