These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The CRF-1 receptor antagonist, CP-154,526, attenuates stress-induced increases in ethanol consumption by BALB/cJ mice. Author: Lowery EG, Sparrow AM, Breese GR, Knapp DJ, Thiele TE. Journal: Alcohol Clin Exp Res; 2008 Feb; 32(2):240-8. PubMed ID: 18162074. Abstract: BACKGROUND: Corticotropin-releasing factor (CRF) signaling modulates neurobiological responses to stress and ethanol, and may modulate observed increases in ethanol consumption following exposure to stressful events. The current experiment was conducted to further characterize the role of CRF1 receptor (CRF1R) signaling in stress-induced increases in ethanol consumption in BALB/cJ and C57BL/6N mice. METHODS: Male BALB/cJ and C57BL/6N mice were given continuous access to 8% (v/v) ethanol and water for the duration of the experiment. When a baseline of ethanol consumption was established, animals were exposed to 5 minutes of forced swim stress on each of 5 consecutive days. Thirty minutes before each forced swim session, animals were given an intraperitoneal injection of a 10 mg/kg dose of CP-154,526, a selective CRF1R antagonist, or an equal volume of vehicle. The effect of forced swim stress exposure on consumption of a 1% (w/v) sucrose solution was also investigated in an ethanol-naïve group of BALB/cJ mice. RESULTS: Exposure to forced swim stress significantly increased ethanol consumption by the BALB/cJ, but not of the C57BL/6N, mice. Stress-induced increases in ethanol consumption were delayed and became evident approximately 3 weeks after the first stressor. Additionally, forced swim stress did not cause increases of food or water intake and did not promote delayed increases of sucrose consumption. Importantly, BALB/cJ mice pretreated with the CRF1R antagonist showed blunted stress-induced increases in ethanol intake, and the CRF1R antagonist did not influence the ethanol drinking of non-stressed mice. CONCLUSIONS: The present results provide evidence that CRF1R signaling modulates the delayed increase of ethanol consumption stemming from repeated exposure to a stressful event in BALB/cJ mice.[Abstract] [Full Text] [Related] [New Search]