These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cardiovascular autonomic regulation in Non-Obese Diabetic (NOD) mice. Author: Gross V, Tank J, Partke HJ, Plehm R, Diedrich A, da Costa Goncalves AC, Luft FC, Jordan J. Journal: Auton Neurosci; 2008 Feb 29; 138(1-2):108-13. PubMed ID: 18166503. Abstract: Non-Obese Diabetic (NOD) mice show profound pathomorphological changes in sympathetic ganglia during the development of type 1 diabetes mellitus. We tested the hypothesis that NOD mice represent an experimental model to investigate cardiovascular changes seen in humans with diabetic autonomic neuropathy. Blood glucose (BG) levels were measured once a week. Diabetes mellitus was diagnosed as BG levels exceeded 250 mg/dl twice. NOD mice that did not become diabetic served as control group. Blood pressure (BP) and heart rate (HR) were monitored by telemetry and baroreflex sensitivity (BRS) was calculated with the sequence method or with cross spectral analysis. The measurements were obtained before onset of diabetes and during the 4th week of diabetes. The onset of diabetes was accompanied by a continuous decline in HR (615+/-14 vs. 498+/-23 bpm), whereas BP values remained stable (108+/-2 vs. 111+/-2 mm Hg). The circadian HR rhythm increased in diabetic NOD mice. BRS was higher in diabetic NOD mice than in controls. Atropine reduced BRS more profoundly in diabetic mice compared to non-diabetic mice. Despite pathomorphological similarities of the diabetic autonomic neuropathy between patients with diabetes and diabetic NOD mice, the changes in blood pressure regulation are different. In conclusion the use of diabetic NOD mice as a functional model for human diabetes may be questioned.[Abstract] [Full Text] [Related] [New Search]