These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 20-HETE-mediated cytotoxicity and apoptosis in ischemic kidney epithelial cells.
    Author: Nilakantan V, Maenpaa C, Jia G, Roman RJ, Park F.
    Journal: Am J Physiol Renal Physiol; 2008 Mar; 294(3):F562-70. PubMed ID: 18171997.
    Abstract:
    20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK(1) cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK(1) cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release (P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 microM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 microM) also inhibited cytotoxicity significantly (P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase (P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells (P < 0.05). This was abolished in the presence of HET-0016 (P < 0.05) or MnTMPyP (P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.
    [Abstract] [Full Text] [Related] [New Search]