These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity.
    Author: Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG.
    Journal: Cancer Res; 2008 Jan 01; 68(1):227-35. PubMed ID: 18172315.
    Abstract:
    Capsiate, a nonpungent capsaicin analogue, and its dihydroderivative dihydrocapsiate are the major capsaicinoids of the nonpungent red pepper cultivar CH-19 Sweet. In this study, we report the biological actions and underlying molecular mechanisms of capsiate on angiogenesis and vascular permeability. In vitro, capsiate and dihydrocapsiate inhibited vascular endothelial growth factor (VEGF)-induced proliferation, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. They also inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessels in the mouse Matrigel plug assay in response to VEGF. Moreover, both compounds blocked VEGF-induced endothelial permeability and loss of vascular endothelial (VE)-cadherin-facilitated endothelial cell-cell junctions. Importantly, capsiate suppressed VEGF-induced activation of Src kinase and phosphorylation of its downstream substrates, such as p125(FAK) and VE-cadherin, without affecting autophosphorylation of the VEGF receptor KDR/Flk-1. In vitro kinase assay and molecular modeling studies revealed that capsiate inhibits Src kinase activity via its preferential docking to the ATP-binding site of Src kinase. Taken together, these results suggest that capsiate could be useful for blocking pathologic angiogenesis and vascular permeability caused by VEGF.
    [Abstract] [Full Text] [Related] [New Search]