These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Author: Kim EH, Yoon MJ, Kim SU, Kwon TK, Sohn S, Choi KS. Journal: Cancer Res; 2008 Jan 01; 68(1):266-75. PubMed ID: 18172319. Abstract: The current study shows that treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells with a combination of TRAIL and subtoxic doses of arsenic trioxide (As(2)O(3)) induces rapid apoptosis. Whereas TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in glioma cells, treatment with As(2)O(3) efficiently recovered TRAIL-induced activation of caspases. We also found that As(2)O(3) treatment of glioma cells significantly up-regulated DR5, a death receptor of TRAIL. Furthermore, suppression of DR5 expression by small interfering RNA (siRNA) inhibited As(2)O(3)/TRAIL-induced apoptosis of U87MG glioma cells, suggesting that DR5 up-regulation is critical for As(2)O(3)-induced sensitization of glioma cells to TRAIL-mediated apoptosis. Our results also indicate that an increase in CCAAT/enhancer binding protein homologous protein (CHOP) protein levels precedes As(2)O(3)-induced DR5 up-regulation. The involvement of CHOP in this process was confirmed by siRNA-mediated CHOP suppression, which not only attenuated As(2)O(3)-induced DR5 up-regulation but also inhibited the As(2)O(3)-stimulated TRAIL-induced apoptosis. These results therefore suggest that the CHOP-mediated DR5 up-regulation, brought about by As(2)O(3), stimulates the TRAIL-mediated signaling pathway. This in turn leads to complete proteolytic processing of caspase-3, which is partially primed by TRAIL in glioma cells. In contrast to human glioma cells, astrocytes were very resistant to the combined administration of As(2)O(3) and TRAIL, demonstrating the safety of this treatment. In addition, As(2)O(3)-mediated up-regulation of CHOP and DR5, as well as partial proteolytic processing of procaspase-3 by TRAIL, was not induced in astrocytes. Taken together, the present results suggest that the combined treatment of glioma cells with As(2)O(3) plus TRAIL may provide an effective and selective therapeutic strategy.[Abstract] [Full Text] [Related] [New Search]