These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BYK191023 (2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3h-imidazo[4,5-b]pyridine) is an NADPH- and time-dependent irreversible inhibitor of inducible nitric-oxide synthase. Author: Tiso M, Strub A, Hesslinger C, Kenney CT, Boer R, Stuehr DJ. Journal: Mol Pharmacol; 2008 Apr; 73(4):1244-53. PubMed ID: 18178668. Abstract: Imidazopyridine derivates were recently shown to be a novel class of selective and arginine-competitive inhibitors of inducible nitric-oxide synthase (iNOS), and 2-[2-(4-methoxypyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) was found to have very high selectivity in enzymatic and cellular models ( Mol Pharmacol 69: 328-337, 2006 ). Here, we show that BYK191023 irreversibly inactivates murine iNOS in an NADPH- and time-dependent manner, whereas it acts only as a reversible l-arginine-competitive inhibitor in the absence of NADPH or during anaerobic preincubation. Time-dependent irreversible inhibition by BYK191023 could also be demonstrated in intact cells using the RAW macrophage or iNOS-overexpressing human embryonic kidney 293 cell lines. The mechanism of BYK191023 inhibition in the presence of NADPH was studied using spectral, kinetic, chromatographic, and radioligand binding methods. BYK191023-bound iNOS was spectrally indistinguishable from l-arginine-bound iNOS, pointing to an interaction of BYK191023 with the catalytic center of the enzyme. [(3)H]BYK191023 was recovered quantitatively from irreversibly inactivated iNOS, and no inhibitor metabolite was detected by high-performance liquid chromatography (HPLC). Size exclusion chromatography revealed only about 20% iNOS dissociation into monomers. Furthermore, HPLC and spectrophotometric analysis showed that the irreversible inhibition was associated with loss of heme from iNOS and a reduced ability to form the distinctive ferrous heme-CO complex (cytochrome P450). Thus, enzyme inactivation is mainly caused by heme loss, and it occurs in the inhibitor-bound enzyme in the presence of electron flux from NADPH.[Abstract] [Full Text] [Related] [New Search]