These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rule mining and classification in a situation assessment application: a belief-theoretic approach for handling data imperfections. Author: Rohitha KK, Hewawasam GK, Premaratne K, Shyu ML. Journal: IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1446-59. PubMed ID: 18179065. Abstract: Management of data imprecision and uncertainty has become increasingly important, especially in situation awareness and assessment applications where reliability of the decision-making process is critical (e.g., in military battlefields). These applications require the following: 1) an effective methodology for modeling data imperfections and 2) procedures for enabling knowledge discovery and quantifying and propagating partial or incomplete knowledge throughout the decision-making process. In this paper, using a Dempster-Shafer belief-theoretic relational database (DS-DB) that can conveniently represent a wider class of data imperfections, an association rule mining (ARM)-based classification algorithm possessing the desirable functionality is proposed. For this purpose, various ARM-related notions are revisited so that they could be applied in the presence of data imperfections. A data structure called belief itemset tree is used to efficiently extract frequent itemsets and generate association rules from the proposed DS-DB. This set of rules is used as the basis on which an unknown data record, whose attributes are represented via belief functions, is classified. These algorithms are validated on a simplified situation assessment scenario where sensor observations may have caused data imperfections in both attribute values and class labels.[Abstract] [Full Text] [Related] [New Search]