These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electronic structures of azulene-fused porphyrins as seen by magnetic circular dichroism and TD-DFT calculations. Author: Nakai K, Kurotobi K, Osuka A, Uchiyama M, Kobayashi N. Journal: J Inorg Biochem; 2008 Mar; 102(3):466-71. PubMed ID: 18180040. Abstract: A combination of magnetic circular dichroism (MCD), electronic absorption spectroscopy and time-dependent density functional theory (TD-DFT) calculations has been used to investigate the electronic structure of azulene-fused pi-expanded porphyrins based primarily on the spectral properties of absorption bands in the near infrared region. From MCD experiments, it was suggested that in the case of a mono-azulene-fused porphyrin DeltaHOMO approximately equal DeltaLUMO (where DeltaHOMO is the magnitude of the energy gap between the HOMO and HOMO-1 and DeltaLUMO is the magnitude of the energy gap between the LUMO and LUMO+1), while in the case of an oppositely-di-azulene-fused porphyrin, DeltaHOMO<DeltaLUMO. Since Faraday A terms are observed for both the Soret and Q bands in the MCD spectrum of tetra-azulene-fused porphyrin the corresponding excited states are clearly accidentally degenerate despite the C(2) molecular symmetry. Transition dipole moment analysis clearly demonstrates that the electronic absorption spectrum of tetra-azulene-fused porphyrin has out-of-plane electronic transitions slightly to the blue of the main Q and Soret bands. Comparison with distorted porphyrins and phthalocyanines strongly suggests that these out-of-plane transitions appear as intense Gaussian-shaped Faraday B terms in the MCD spectra.[Abstract] [Full Text] [Related] [New Search]