These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Primordial radionuclides in Canadian background sites: secular equilibrium and isotopic differences.
    Author: Sheppard SC, Sheppard MI, Ilin M, Tait J, Sanipelli B.
    Journal: J Environ Radioact; 2008 Jun; 99(6):933-46. PubMed ID: 18180083.
    Abstract:
    A literature review and field sampling were done to obtain information on primordial (natural-series) radionuclide concentrations in terrestrial environments in diverse locations across Canada. Of special interest was the degree of secular equilibrium among members of decay series. The analytes measured in soils and plants were (nat)U by neutron activation-delayed neutron counting, (228)Th, (230)Th, (232)Th, (226)Ra and (210)Po by alpha spectroscopy, (210)Pb by gas flow proportional counting, (228)Ra by beta counting and (137)Cs by gamma spectroscopy. In addition, ICP-MS was used to obtain concentrations of about 50 analytes including elemental U, Pb, and Th. Samples were from seven representative background sites with a total of 162 plant samples from 38 different species. These data were supplemented by a review that gathered a large portion of the similar data from published sources. The sites chosen were semi-natural, far from any nuclear industry, although several were specifically located in areas with slightly elevated natural U concentrations. As might be expected, there were many cases of non-detectable concentrations. However, certain trends were evident. The activity ratio (210)Po/(210)Pb was unity in soils and non-annual plant tissues such as lichens. It was about 0.6 in annual plant tissues. These results are consistent with the time required for ingrowth of (210)Po to reach secular equilibrium. There was evidence from several sources that (210)Pb in plants came predominantly from deposition of (210)Pb from air after the decay of airborne (222)Rn. This was expected. Somewhat unexpected was the observation that (228)Th seemed to be much more plant available than (232)Th, even though both are in the same decay series and should be chemically similar. The difference was attributed to the combined effects of ingrowth from (228)Ra in the plant and effects of alpha recoil in mobilizing (228)Th in the soil. In general, the results of this study will benefit risk assessment, both in providing background concentrations, but also some indication of where isotope activity ratios can and cannot be used to estimate concentrations.
    [Abstract] [Full Text] [Related] [New Search]