These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Properties of pellets manufactured by wet extrusion/spheronization process using kappa-carrageenan: effect of process parameters. Author: Thommes M, Kleinebudde P. Journal: AAPS PharmSciTech; 2007 Nov 09; 8(4):E95. PubMed ID: 18181555. Abstract: The aim of this study was to systematically evaluate the pelletization process parameters of kappa-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters--screw speed, number of die holes, friction plate speed, and spheronizer temperature--on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 2(4) full factorial design. In addition, 4 drugs--phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride--were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with kappa-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used.[Abstract] [Full Text] [Related] [New Search]