These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of antimitotic agents on tubulin-nucleotide interactions.
    Author: Correia JJ.
    Journal: Pharmacol Ther; 1991 Nov; 52(2):127-47. PubMed ID: 1818332.
    Abstract:
    The interaction of antimitotic drugs with guanine nucleotides in the tubulin-microtubule system is reviewed. Antimitotic agent-tubulin interactions can be covalent, entropic, allosteric or coupled to other equilibria (such as divalent cation binding, alternate polymer formation, or the stabilization of native tubulin structure). Antimitotics bind to tubulin at a few common sites and alter the ability of tubulin to form microtubules. Colchicine and podophyllotoxin compete for a common overlapping binding site but only colchicine induces GTPase activity and large conformational changes in the tubulin heterodimer. The vinca alkaloids, vinblastine and vincristine, the macrocyclic ansa macrolides, maytansine and ansamitocin P-3, and the fungal antimitotic, rhizoxin, share and compete for a different binding site near the exchangeable nucleotide binding site. The macrocyclic heptapeptide, phomopsin A, and the depsipeptide, dolastatin 10, bind to a site adjacent to the vinca alkaloid and nucleotide sites. Colchicine, vinca alkaloids, dolastatin 10 and phomopsin A induce alternate polymer formation (sheets for colchicine, spirals for vinblastine and vincristine and rings for dolastatin 10 and phomopsin A). Maytansine, ansamitocin P-3 and rhizoxin inhibit vinblastine-induced spiral formation. Taxol stoichiometrically induces microtubule formation and, in the presence of GTP, assembly-associated GTP hydrolysis. Analogs of guanine nucleotides also alter polymer morphology. Thus, sites on tubulin for drugs and nucleotides communicate allosterically with the interfaces that form longitudinal and lateral contacts within a microtubule. Microtubule associated proteins (MAPs), divalent cations, and buffer components can alter the surface interactions of tubulin and thus modulate the interactions between antimitotic drugs and guanine nucleotides.
    [Abstract] [Full Text] [Related] [New Search]