These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Author: Titt U, Zheng Y, Vassiliev ON, Newhauser WD.
    Journal: Phys Med Biol; 2008 Jan 21; 53(2):487-504. PubMed ID: 18185001.
    Abstract:
    As a proton-therapy beam passes through the field-limiting aperture, some of the protons are scattered off the edges of the collimator. The edge-scattered protons can degrade the dose distribution in a patient or phantom, and these effects are difficult to model with analytical methods such as those available in treatment planning systems. The objective of this work was to quantify the dosimetric impact of edge-scattered protons for a representative variety of clinical treatment beams. The dosimetric impact was assessed using Monte Carlo simulations of proton beams from a contemporary treatment facility. The properties of the proton beams were varied, including the penetration range (6.4-28.5 cm), width of the spread-out Bragg peak (SOBP; 2-16 cm), field size (3 x 3 cm(2) to 15 x 15 cm(2)) and air gap, i.e. the distance between the collimator and the phantom (8-48 cm). The simulations revealed that the dosimetric impact of edge-scattered protons increased strongly with increasing range (dose increased by 6-20% with respect to the dose at the center of the spread-out Bragg peak), decreased strongly with increasing field size (dose changed by 2-20%), increased moderately with increasing air gap (dose increased by 2-6%) and increased weakly with increasing SOBP width (dose change <4%). In all cases examined, the effects were largest at shallow depths. We concluded that the dose deposited by edge-scattered protons can distort the dose proximal to the target with varying contributions due to the proton range, treatment field size, collimator position and thickness, and width of the SOBP. Our findings also suggest that accurate predictions of dose per monitor-unit calculations may require taking into account the dose from protons scattered from the edge of the patient-specific collimator, particularly for fields of small lateral size and deep depths.
    [Abstract] [Full Text] [Related] [New Search]