These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP regulation of a large conductance voltage-gated cation channel in rough endoplasmic reticulum of rat hepatocytes.
    Author: Ashrafpour M, Eliassi A, Sauve R, Sepehri H, Saghiri R.
    Journal: Arch Biochem Biophys; 2008 Mar 01; 471(1):50-6. PubMed ID: 18187033.
    Abstract:
    ATP-sensitive K+ channels play an important role in regulating membrane potential during metabolic stress. In this work we report the effect of ATP and ADP-Mg on a K+ channel present in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity was found to decrease in presence of ATP 100 microM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25mM. The effect appeared voltage dependent, suggesting that the ATP binding site was becoming available upon channel opening. Channel activity was suppressed by the nonhydrolyzable ATP analog (ATPgammaS), ruling out a phosphorylation-based mechanism. Notably addition of 2.5mM ADP-Mg to the cytosolic side increased the channel open probability at negative potentials. We conclude that the large conductance voltage-gated cation channel in RER of rat hepatocytes is an ATP and ADP sensitive channel likely to be involved in cellular processes such as Ca(2+) signaling or control of membrane potential across the endoplasmic reticulum membrane.
    [Abstract] [Full Text] [Related] [New Search]