These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipoxygenase metabolites are mediators of PTH-dependent human osteoblast growth. Author: Somjen D, Tordjman K, Katzburg S, Knoll E, Sharon O, Limor R, Naidich M, Naor Z, Hendel D, Stern N. Journal: Bone; 2008 Mar; 42(3):491-7. PubMed ID: 18187376. Abstract: PTH-induced osteoblast proliferation may contribute to its anabolic effects in bone. Since PTH-dependent osteoblast-like cell (Ob) growth is mediated via protein kinase C (PKC) and MAP kinase-kinase (MEK) and since lipoxygenase (LO) products activate PKC in a number of cell types, we assessed the expression of LO pathways in primary human cultured Ob. Ob from pre- or post-menopausal women were cultured and were treated with PTH and assayed for the expression of 12-LO and both type I and type II 15-LO mRNA and for the release their enzymatic products, 12- and 15-hydroxyeicosatetraenoic acid (HETE). Cells were also treated with PTH for stimulation DNA synthesis. First, Ob express platelet type- 12-LO and both type I and type II 15-LO mRNA and release their enzymatic products, 12- and 15-hydroxyeicosatetraenoic acid (HETE). Second, in female Ob, PTH induced a rapid increase in 12-HETE (50 fold increase) and 15-HETE (80 fold increase) and increased the expression of 12-LO mRNA but not of the two isoforms of 15-LO. PTH as well as 12 and 15-HETE stimulated DNA synthesis in Ob. The LO inhibitor baicalein inhibited PTH-stimulated DNA synthesis, which was reversed in the presence of either 12- or 15-HETE. A PKC inhibitor (bisindolylmaleimide I) as well as a MEK inhibitor (PD 98059) completely inhibited the stimulation of DNA synthesis by PTH, 12-HETE and the combination of PTH and 12-HETE. In contrast, 15-HETE-induced DNA synthesis was not abolished by these inhibitors. Further, 15-HETE partially restored the stimulatory effect of PTH on DNA synthesis in cells treated with PKC or MEK inhibitors. Finally, PTH- induced ERK1/2 phosphorylation, was blocked by a MEK inhibitor. These results demonstrate a novel mechanism of PTH-induced human bone cell proliferation operating through LO enzymes.[Abstract] [Full Text] [Related] [New Search]