These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased intestinal permeability in rats subjected to traumatic frontal lobe percussion brain injury. Author: Feighery L, Smyth A, Keely S, Baird AW, O'Connor WT, Callanan JJ, Brayden DJ. Journal: J Trauma; 2008 Jan; 64(1):131-7; discussion 137-8. PubMed ID: 18188111. Abstract: BACKGROUND: Dysfunction of the gastrointestinal tract is a common occurrence after traumatic brain injury (TBI). We hypothesized that increased intestinal permeability may result from a precisely controlled percussion injury to the exposed brains of anesthetized rats and that such an effect could be assessed in vitro using excised intestinal mucosae mounted in Ussing chambers. METHODS: After craniotomy over the left medial prefrontal cortex on anesthetized rats, neurotrauma was produced using a pneumatically driven impactor on the exposed brain. Control rats were subjected to identical procedures but did not receive an impact. Muscle-stripped rat intestinal ileal and colonic segments were mounted in Ussing chambers within 30 minutes of death. Transepithelial electrical resistance (TEER) and the apparent permeability coefficient (Papp) of [C]-mannitol were recorded from intestinal tissue for 120 minutes. Histopathologic analysis was also performed to determine any gross morphologic changes in the intestine. RESULTS: Ileal and colonic mucosae showed no differences in TEER in ileum or colon of TBI rats compared with controls. The Papp of mannitol was significantly increased in ilea from rats previously exposed to TBI compared with controls. Histologic analysis showed gross changes to 50% of the ileal but not the colonic sections from TBI rats. CONCLUSION: TBI results in significantly reduced ileal barrier function, most likely mediated by open tight junctions. For patients with acute head injury, this may have implications for subsequent oral absorption of nutrients. Systemic delivery of luminal endotoxins may contribute to multiple organ failure.[Abstract] [Full Text] [Related] [New Search]