These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory. Author: Yu YX, Jin L. Journal: J Chem Phys; 2008 Jan 07; 128(1):014901. PubMed ID: 18190220. Abstract: The interaction between colloidal particles is well represented by a hard-core two-Yukawa potential. In order to assess the accuracy of theoretical predictions for the thermodynamic and structural properties of mixed colloids, standard Monte Carlo simulations are carried out for the hard-core two-Yukawa mixtures. In the simulations, one range parameter in the two-Yukawa potential is taken as 1.8 or 2.8647, and another is taken as 4, 8, or 13.5485. Both attractive and repulsive dominant cases of the potential outside the hard core are considered. The effects of temperature, density, composition, size and energy parameter ratios on internal energy, compressibility factor, and radial distribution function are investigated extensively. Theoretical calculations are performed in the framework of analytical solution for the Ornstein-Zernike equation with the first-order mean spherical approximation (FMSA). Our analysis shows that the FMSA is very accurate for the prediction of the compressibility factor of the hard-core two-Yukawa mixtures at all conditions studied. The FMSA generally predicts accurate internal energy, but overestimates the internal energy of the systems at lower temperatures. Furthermore, we found that a simplified exponential version of the FMSA predicts fairly good radial distribution function at contact for the mixed two-Yukawa fluids. The comparison of the theoretical compressibility factor with that from the Monte Carlo simulations suggests that the FMSA can be used to investigate the fluid-fluid equilibria of hard-core two-Yukawa mixtures.[Abstract] [Full Text] [Related] [New Search]