These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells.
    Author: Wu CC, Chao YC, Chen CN, Chien S, Chen YC, Chien CC, Chiu JJ, Linju Yen B.
    Journal: J Biomech; 2008; 41(4):813-21. PubMed ID: 18190919.
    Abstract:
    There have been intensive studies on the differentiation of endothelial progenitor cells (EPCs) into endothelial cells. We investigated the endothelial differentiation of placenta-derived multipotent cells (PDMCs), a population of CD34(-)/CD133(-)/Flk-1(-) cells. PDMCs were cultured in basal media or media containing endothelial growth factors (EGM), including vascular endothelial growth factor (VEGF), for 3 days and then subjected to shear stress of 6 or 12dyn/cm(2) for 24h. Culture of PDMCs in EGM under static conditions resulted in significant increases in VEGF receptor-1 (Flt-1) and receptor-2 (Flk-1) expression. Application of shear stress at 12dyn/cm(2) to these cells led to significant increases in their expression of von Willebrand Factor and platelet-endothelial cell adhesion molecule-1 at both the gene and protein levels. Shear stress at 6dyn/cm(2) had lesser effects. Uptakes of acetylated low-density lipoproteins as well as formation of tube-like structures on Matrigel were significantly increased after subjecting to shear stress of 12dyn/cm(2) for 24h. Our findings suggest that the combined use of endothelial growth factors and high shear stress is synergistic for the endothelial differentiation of PDMCs.
    [Abstract] [Full Text] [Related] [New Search]