These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced activation of phospholipase C and insulin secretion from islets incubated in fatty acid-free bovine serum albumin.
    Author: Zawalich WS, Zawalich KC.
    Journal: Metabolism; 2008 Feb; 57(2):290-8. PubMed ID: 18191063.
    Abstract:
    Incubation in 100 micromol/L fatty acid-free bovine serum albumin (FAF-BSA) significantly amplifies insulin secretion from isolated, perifused rat islets. When compared with the responses of control islets incubated in 100 micromol/L radioimmunoassay-grade BSA, insulin secretion rates were increased 2- to 3-fold when these islets were stimulated with 10 mmol/L glucose alone or with the combination of 10 mmol/L glucose, 15 mmol/L KCl, and 100 micromol/L diazoxide. These amplified secretory responses were paralleled by significant increases in the phospholipase C (PLC) activation monitored by fractional increases in (3)H-inositol efflux from these same islets. Amplified PLC responses were also observed with the cholinergic agonist carbachol (50 micromol/L). No differences in the secretory responses to the protein kinase C activator phorbol 12-myristate 13-acetate (200 nmol/L) could be detected between control and FAF-BSA-pretreated rat islets. Mouse islets were also immune to the amplifying impact of this treatment protocol. These findings demonstrate that short-term incubation in FAF-BSA significantly augments the activation of PLC in rat islets by a number of agonists. This proximal event provides the impetus for the distal activation of protein kinase C. If applicable to human islets, this manipulation may provide a mechanism to enhance the secretory responses from islets destined for transplantation, thus improving their in vivo secretory capacity.
    [Abstract] [Full Text] [Related] [New Search]