These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polylactide-co-glycolide (PLG) microparticles modify the immune response to DNA vaccination. Author: Helson R, Olszewska W, Singh M, Megede JZ, Melero JA, O'Hagan D, Openshaw PJ. Journal: Vaccine; 2008 Feb 06; 26(6):753-61. PubMed ID: 18191308. Abstract: Priming with the major surface glycoprotein G of respiratory syncytial virus (RSV) expressed by recombinant vaccinia leads to strong Th2 responses and lung eosinophilia during viral challenge. We now show that DNA vaccination in BALB/c mice with plasmids encoding G attenuated RSV replication but also enhanced disease with lung eosinophilia and increased IL-4/5 production. However, formulating the DNA with PLG microparticles reduced the severity of disease during RSV challenge without significantly lessening protection against viral replication. PLG formulation greatly reduced lung eosinophilia and prevented the induction of IL-4 and IL-5 during challenge, accompanied by a less marked CD4+ T cell response and a restoration of the CD8+ T cell recruitment seen during infection of non-vaccinated animals. After RSV challenge, lung eosinophilia was enhanced and prolonged in mice vaccinated with DNA encoding a secreted form of G; this effect was virtually prevented by PLG formulation. Therefore, PLG microparticulate formulation modifies the pattern of immune responses induced by DNA vaccination boosts CD8+ T cell priming and attenuates Th2 responses. We speculate that PLG microparticles affect antigen uptake and processing, thereby influencing the outcome of DNA vaccination.[Abstract] [Full Text] [Related] [New Search]