These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gc-globulin (vitamin D binding protein) is synthesized and secreted by hepatocytes and internalized by hepatic stellate cells through Ca(2+)-dependent interaction with the megalin/gp330 receptor. Author: Gressner OA, Lahme B, Gressner AM. Journal: Clin Chim Acta; 2008 Apr; 390(1-2):28-37. PubMed ID: 18194670. Abstract: BACKGROUND: Gc-globulin or vitamin D binding protein is a highly expressed, multifunctional and polymorphic serum protein, which also serves as the major transporter for vitamin D metabolites in the circulation. The present study was performed to analyze the interaction between gc-globulin of hepatocytes and hepatic stellate cells, the most important fat-/retinol-storing cell type in the liver, which spontaneously transdifferentiates to myofibroblasts in culture. METHODS: Hepatic stellate cells and hepatocytes were isolated by the pronase/collagenase reperfusion method, hepatocytes by collagenase reperfusion of the organ. Gc-globulin expression was monitored by immunocytochemistry, immunoblotting, RT-PCR, metabolic labelling with [(35)S]-methionine, and its intracellular binding to alpha-smooth-muscle actin was investigated by co-immunoprecipitation. Cytoskeletal stainings of gc-globulin and alpha-smooth-muscle actin in hepatic stellate cells and the identification of the receptors megalin/gp330, HCAM/CD44, cubilin and annexin A2 were performed with confocal immunocytochemistry, immunoblotting and/or FACS-analysis. RESULTS: Hepatocytes synthesize and secrete gc-globulin as shown by RT-PCR and [(35)S]-methionine labelling, which could be suppressed by cycloheximide. Also, a strong signal for gc-globulin was detected in the immunoblot of native hepatic stellate cell lysates. However, no mRNA for gc-globulin was found in this cell type, which suggests no active synthesis by hepatic stellate cells. Hepatic stellate cells were tested positively for the presence of known gc-globulin interacting receptors megalin/gp330, HCAM/CD44, cubilin and annexin A2. Inhibition of the megalin/gp330 receptor by a competitive, neutralizing antibody resulted in decreased intracellular availability of gc-globulin in hepatic stellate cells. The latter effect was enhanced by additional incubation of hepatic stellate cells with EDTA for complexing Ca(2+), suggesting a Ca(2+)-dependent internalization of gc-globulin into hepatic stellate cells via the megalin/gp300 receptor. This was supported by confocal microscopy which showed a co-localization of gc-globulin with the multifunctional megalin/gp330 receptor on this cell type. Inside hepatic stellate cells, a linkage between gc-globulin and alpha-smooth muscle actin filaments of hepatic stellate cells was detected by immunocytochemistry. Intracellular binding of gc-globulin to alpha-smooth-muscle actin filaments was confirmed by co-immunoprecipitation. CONCLUSION: We give evidence to the expression of the megalin/gp330 receptor on hepatic stellate cells and that this receptor is involved in the Ca(2+)-dependent internalization of gc-globulin into hepatic stellate cells, a protein synthesized and secreted into the extracellular space and circulation by hepatocytes. Inside hepatic stellate cells, it co-localizes with and binds to alpha-smooth muscle actin filaments. Under consideration of the available literature, these findings propose a participation of gc-globulin in hepatic vitamin D metabolism as well as in hepatic stellate cell stability and apoptosis as important mechanisms of liver regeneration.[Abstract] [Full Text] [Related] [New Search]