These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Author: Ebos JM, Lee CR, Bogdanovic E, Alami J, Van Slyke P, Francia G, Xu P, Mutsaers AJ, Dumont DJ, Kerbel RS. Journal: Cancer Res; 2008 Jan 15; 68(2):521-9. PubMed ID: 18199548. Abstract: Vascular endothelial growth factor (VEGF) is a potent proangiogenic protein that activates VEGF receptor (VEGFR) tyrosine kinases expressed by vascular endothelial cells. We previously showed that one of these receptors, VEGFR-2, has a truncated soluble form (sVEGFR-2) that can be detected in mouse and human plasma. Because activation of VEGFR-2 plays an important role in tumor angiogenesis, clinical interest in monitoring plasma sVEGFR-2 levels in cancer patients has focused on its potential exploitation as a surrogate biomarker for disease progression as well as assessing efficacy/activity of antiangiogenic drugs, particularly those that target VEGF or VEGFR-2. However, no preclinical studies have been done to study sVEGFR-2 during tumor growth or the mechanisms involved in its modulation. Using spontaneously growing tumors and both localized and metastatic human tumor xenografts, we evaluated the relationship between sVEGFR-2 and tumor burden as well as underlying factors governing protein level modulation in vivo. Our results show an inverse relationship between the levels of sVEGFR-2 and tumor size. Furthermore, using various methods of VEGF overexpression in vivo, including cell transfection and adenoviral delivery, we found plasma sVEGFR-2 decreases to be mediated largely by tumor-derived VEGF. Finally, in vitro studies indicate VEGF-mediated sVEGFR-2 modulation is the result of ligand-induced down-regulation of the VEGFR-2 from the cell surface. Taken together, these findings may be pertinent to further clinical exploitation of plasma sVEGFR-2 levels as a surrogate biomarker of VEGF-dependent tumor growth as well as an activity indicator of antiangiogenic drugs that target the VEGFR system.[Abstract] [Full Text] [Related] [New Search]