These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A1 receptors.
    Author: Rieg T, Pothula K, Schroth J, Satriano J, Osswald H, Schnermann J, Insel PA, Bundey RA, Vallon V.
    Journal: Am J Physiol Renal Physiol; 2008 Mar; 294(3):F638-44. PubMed ID: 18199602.
    Abstract:
    Activation of adenosine A(1) receptors (A(1)R) can inhibit arginine vasopressin (AVP)-induced cAMP formation in isolated cortical and medullary collecting ducts. To assess the in vivo consequences of the absence of A(1)R, we performed experiments in mice lacking A(1)R (A(1)R(-/-)). We assessed the effects of the vasopressin V(2) receptor (V(2)R) agonist 1-desamino-8-d-arginine vasopressin (dDAVP) on cAMP formation in isolated inner medullary collecting ducts (IMCD) and on water excretion in conscious water-loaded mice. dDAVP-induced cAMP formation in isolated IMCD was significantly greater ( approximately 2-fold) in A(1)R(-/-) compared with wild-type mice (WT) and, in contrast to WT, was not inhibited by the A(1)R agonist N6-cyclohexyladenosine. A(1)R(-/-) and WT had similar basal urinary excretion of vasopressin, expression of aquaporin-2 protein in renal cortex and medulla, and acute increases in urinary flow rate and electrolyte-free water clearance in response to the V(2)R antagonist SR121463 or acute water loading; the latter increased inner medullary A(1)R expression in WT. Dose dependence of dDAVP-induced antidiuresis after acute water loading was not different between the genotypes. However, A(1)R(-/-) had greater inner medullary expression of cyclooxygenase-1 under basal conditions and of the P2Y(2) and EP(3) receptor in response to water loading compared with WT mice. Thus vasopressin-induced cAMP formation is enhanced in isolated IMCD of mice lacking A(1)R, but the adenosine-A(1)R/V(2)R interaction demonstrated in vitro is likely compensated in vivo by multiple mechanisms, a number of which can be "uncovered" by water loading.
    [Abstract] [Full Text] [Related] [New Search]