These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.
    Author: Sueyoshi K, Kitagawa F, Otsuka K.
    Journal: Anal Chem; 2008 Feb 15; 80(4):1255-62. PubMed ID: 18201071.
    Abstract:
    This paper describes a novel on-line sample preconcentration and separation technique named transient trapping (tr-trapping), which improves the efficiencies of separation and concentration by using a partially injected short micellar plug in microchip electrophoresis. Although a longer separation length often provides a better resolution of complexed or closely migrating analytes, our proposed theoretical model indicated that a trap-and-release mechanism enables a short micellar zone, which was partially injected into the separation channel, to work as an effective concentration and separation field. Application of the tr-trapping technique to microchip micellar electrokinetic chromatography (MCMEKC) was performed on a newly fabricated 5-way-cross microchip by using sodium dodecyl sulfate and rhodamine dyes as test micelle and analytes, respectively. When the injection times of micelle (t(inj),M) and sample solution (t(inj),S) were 1.0 and 2.0 s, respectively, both the preconcentration and separation of the dyes were completely finished within only 3.0 s. At t(inj),S of 8.0 s, a 393-fold improvement of the detectability was achieved in comparison with conventional MCMEKC. The resolution obtained with tr-trapping-MCMEKC was also better than that with conventional MCMEKC in spite of the 160-fold shorter length of the injected micellar zone at t(inj),M of 1.0 s. These results clearly demonstrated that the tr-trapping technique in MCMEKC provides a rapid, high-resolution and detectability analysis even in the short separation channel on the microchips.
    [Abstract] [Full Text] [Related] [New Search]