These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. Author: Sponberg S, Full RJ. Journal: J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999. Abstract: A musculo-skeletal structure can stabilize rapid locomotion using neural and/or mechanical feedback. Neural feedback results in an altered feedforward activation pattern, whereas mechanical feedback using visco-elastic structures does not require a change in the neural motor code. We selected musculo-skeletal structures in the cockroach (Blaberus discoidalis) because their single motor neuron innervation allows the simplest possible characterization of activation. We ran cockroaches over a track with randomized blocks of heights up to three times the animal's ;hip' (1.5 cm), while recording muscle action potentials (MAPs) from a set of putative control musculo-skeletal structures (femoral extensors 178 and 179). Animals experienced significant perturbations in body pitch, roll and yaw, but reduced speed by less than 20%. Surprisingly, we discovered no significant difference in the distribution of the number of MAPs, the interspike interval, burst phase or interburst period between flat and rough terrain trials. During a few very large perturbations or when a single leg failed to make contact throughout stance, neural feedback was detectable as a phase shift of the central rhythm and alteration of MAP number. System level responses of appendages were consistent with a dominant role of mechanical feedback. Duty factors and gait phases did not change for cockroaches running on flat versus rough terrain. Cockroaches did not use a follow-the-leader gait requiring compensatory corrections on a step-by-step basis. Arthropods appear to simplify control on rough terrain by rapid running that uses kinetic energy to bridge gaps between footholds and distributed mechanical feedback to stabilize the body.[Abstract] [Full Text] [Related] [New Search]