These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of Cysteine-Capped Zn(x)Cd(1)(-)(x)Se alloyed quantum dots emitting in the blue-green spectral range.
    Author: Liu FC, Cheng TL, Shen CC, Tseng WL, Chiang MY.
    Journal: Langmuir; 2008 Mar 04; 24(5):2162-7. PubMed ID: 18205420.
    Abstract:
    Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.
    [Abstract] [Full Text] [Related] [New Search]