These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adaptive nonlinear least bit error-rate detection for symmetrical RBF beamforming. Author: Chen S, Wolfgang A, Harris CJ, Hanzo L. Journal: Neural Netw; 2008; 21(2-3):358-67. PubMed ID: 18207699. Abstract: A powerful symmetrical radial basis function (RBF) aided detector is proposed for nonlinear detection in so-called rank-deficient multiple-antenna assisted beamforming systems. By exploiting the inherent symmetry of the optimal Bayesian detection solution, the proposed RBF detector becomes capable of approaching the optimal Bayesian detection performance using channel-impaired training data. A novel nonlinear least bit error algorithm is derived for adaptive training of the symmetrical RBF detector based on a stochastic approximation to the Parzen window estimation of the detector output's probability density function. The proposed adaptive solution is capable of providing a signal-to-noise ratio gain in excess of 8 dB against the theoretical linear minimum bit error rate benchmark, when supporting four users with the aid of two receive antennas or seven users employing four receive antenna elements.[Abstract] [Full Text] [Related] [New Search]