These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression.
    Author: Liao L, Chen X, Wang S, Parlow AF, Xu J.
    Journal: Mol Cell Biol; 2008 Apr; 28(7):2460-9. PubMed ID: 18212051.
    Abstract:
    Steroid receptor coactivator 3 (SRC-3/AIB1/ACTR/NCoA-3) is a transcriptional coactivator for nuclear receptors including vitamin D receptor (VDR). Growth hormone (GH) regulates insulin-like growth factor I (IGF-I) expression, and IGF-I forms complexes with acid-labile subunit (ALS) and IGF-binding protein 3 (IGFBP-3) to maintain its circulating concentration and endocrine function. This study demonstrated that the circulating IGF-I was significantly reduced in SRC-3(-/-) mice with the C57BL/6J background. However, SRC-3 deficiency affected neither GH nor ALS expression. The low IGF-I level in SRC-3(-/-) mice was not due to the failure of IGF-I mRNA and protein synthesis but was a consequence of rapid degradation. The rapid IGF-I degradation was associated with drastically reduced IGFBP-3 levels. Because IGF-I and IGFBP-3 stabilize each other, SRC-3(-/-) mice were crossbred with the liver-specific transthyretin (TTR)-IGF-I transgenic mice to assess the relationship between reduced IGF-I and IGFBP-3. In SRC-3(-/-)/TTR-IGF-I mice, the IGF-I level was significantly increased over that in SRC-3(-/-) mice, but the IGFBP-3 level failed to increase proportionally, indicating that the low IGFBP-3 level is a responsible factor that limits the IGF-I level in SRC-3(-/-) mice. Furthermore, IGFBP-3 mRNA was reduced in SRC-3(-/-) mice. The IGFBP-3 promoter activity induced by vitamin D, through VDR, was diminished in SRC-3(-/-) cells, suggesting an important role of SRC-3 in VDR-mediated transactivation of the IGFBP-3 gene. In agreement with the role of SRC-3 in VDR function, the expression of several VDR target genes was also reduced in SRC-3(-/-) mice. Therefore, SRC-3 maintains IGF-I in the circulation through enhancing VDR-regulated IGFBP-3 expression.
    [Abstract] [Full Text] [Related] [New Search]