These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene expression in endothelial cells and intimal smooth muscle cells in atherosclerosis-prone or atherosclerosis-resistant regions of the human aorta. Author: Wara AK, Mitsumata M, Yamane T, Kusumi Y, Yoshida Y. Journal: J Vasc Res; 2008; 45(4):303-13. PubMed ID: 18212511. Abstract: BACKGROUND/AIMS: We compared the atherogenic gene expression in the intimas of atherosclerosis-prone regions (proximal walls), which are exposed to disturbed shear stress, and atherosclerosis-resistant regions (apices), which are exposed to unidirectional laminar shear stress, at the orifices of the intercostal arteries of human aortas. METHODS AND RESULTS: Expression of mRNAs, detected by in situ RT-PCR, for IL-1 beta, TNF-alpha, VCAM-1, PAF receptor and GRP in endothelial cells (ECs), and of PDGF receptor beta (PDGFR-beta), MCP-1, GRP and collagen type-1 by smooth muscle cells (SMCs) in the proximal walls, was significantly enhanced, while seldom observed in the elastic-hyperplastic layer of the apices. Protein expression of PDGFR-beta, IL-1 beta and TNF-alpha was also observed on the proximal walls. SMC growth in the apices was inhibited. Cultured SMC growth and their expression of PDGFR-beta were also significantly inhibited by elastin. CONCLUSION: These results suggest that the construction of the elastic-hyperplastic layer and the subsequent inhibition of SMC growth by elastin, with stabilized ECs under unidirectional laminar shear stress, resulted in atherosclerosis-resistant regions at the apices of human aortas, and that the continuous induction of atherogenic gene expression by ECs activated by disturbed shear stress inhibits the formation of atherosclerosis-resistant intima along the proximal walls.[Abstract] [Full Text] [Related] [New Search]