These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of 99mTc(CO)3-deoxyuridine derivatives as potential HSV1-tk gene expression imaging agents.
    Author: Young Kim J, Jun Oh S, Sook Ryu J, Choi SJ, Ha HJ, Hyuk Moon D.
    Journal: Appl Radiat Isot; 2008 Apr; 66(4):489-96. PubMed ID: 18222693.
    Abstract:
    In this study, we synthesized (99m)Tc(CO)(3)-2'-aminomethylpyridyl-2'-deoxyuridine ((99m)Tc(CO)(3)-AMPDU) and (99m)Tc(CO)(3)-aminoethylpyridyl-2'-deoxyuridine ((99m)Tc(CO)(3)-AEPDU) as potential agents for imaging the expression of the non-invasive herpes simplex virus type-1 thymidine kinase. AMPDU and AEPDU were synthesized from uridine in five chemical steps and then labeled with [(99m)Tc(CO)(3)(H(2)O)(3)](+) (370MBq/0.5 mL) at 100 degrees C for 10 min. Under optimal conditions (0.5 and 1.0mg for AMPDU and AEPDU and heating for 10 min), the labeling efficiency was 95.3+/-2.8% for AMPDU and 94.2+/-5.1% for AEPDU. To validate the chemical structure of (99m)Tc(CO)(3)-labeled compounds, we also synthesized ReBr(CO)(3)-AMPDU and ReBr(CO)(3)-AEPDU by reacting [Et(4)N][ReBr(3)(CO)(3)] and AMPDU or AEPDU in methanol at 25 degrees C for 6h. (99m)Tc(CO)(3)-AMPDU and (99m)Tc(CO)(3)-AEPDU had the same retention time on HPLC analysis as ReBr(CO)(3)-AMPDU and ReBr(CO)(3)-AEPDU. (99m)Tc(CO)(3)-AMPDU and (99m)Tc(CO)(3)-AEPDU had high radiochemical stabilities of 98.1+/-1.5% and 98.0+/-1.7% for 6h, respectively.
    [Abstract] [Full Text] [Related] [New Search]