These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the membrane-bound and the soluble periplasmic phosphoglycerol transferases are encoded by the same gene.
    Author: Lequette Y, Lanfroy E, Cogez V, Bohin JP, Lacroix JM.
    Journal: Microbiology (Reading); 2008 Feb; 154(Pt 2):476-483. PubMed ID: 18227251.
    Abstract:
    In Escherichia coli, osmoregulated periplasmic glucans (OPGs) are highly substituted by phosphoglycerol, phosphoethanolamine and succinyl residues. A two-step model was proposed to account for phosphoglycerol substitution: first, the membrane-bound phosphoglycerol transferase I transfers residues from membrane phosphatidylglycerol to nascent OPG molecules; second, the periplasmic phosphoglycerol transferase II swaps residues from one OPG molecule to another. Gene opgB was reported to encode phosphoglycerol transferase I. In this study, we demonstrate that the periplasmic enzyme II is a soluble form of the membrane-bound enzyme I. In addition, timing of OPG substitution was investigated. OPG substitution by succinyl residues occurs rapidly, probably during the backbone polymerization, whereas phosphoglycerol addition is a very progressive process. Thus, both phosphoglycerol transferase activities appear biologically necessary for complete OPG substitution.
    [Abstract] [Full Text] [Related] [New Search]