These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diversity of the nitrite reductase gene nirS in the sediment of a free-water surface constructed wetland. Author: Ruiz-Rueda O, Trias R, Garcia-Gil LJ, Bañeras L. Journal: Int Microbiol; 2007 Dec; 10(4):253-60. PubMed ID: 18228222. Abstract: The diversity of the nitrite reductase gene nirS was studied in the bulk sediment of a free-water surface constructed wetland (FWS-CW) located next to the Empuriabrava wastewater treatment plant (WWTP), in Castelló d'Empúries (Girona, NE Spain). The study period extended from the inception of the treatment wetland, in June 1998, until March 1999 and comprised periods of relatively high nitrate and ammonium concentrations at the influent and low nitrate-removal efficiencies. To evaluate nirS diversity, partial gene sequences were obtained by cloning of the respective PCR products. Rarefaction curves based on DOTUR analyses of the deduced amino-acid sequences predicted a greater diversity of nirS genes in samples containing higher ammonium concentrations. Estimated Shannon-Weaver indices of the four cloned samples showed a positive relationship with the N-NH4 +/N-NO3 - ratios measured at the FWS-CW inlet. Identities between the deduced amino-acid sequences and those previously deposited in public databases ranged from 72 to 97%. Phylogenetic analysis based on these deduced sequences grouped 165 nirS clones in seven main clusters according to high similarity indices. Up to 60% of the clones clustered together in a highly homogeneous group with little homologies to any sequence retrieved from cultured representatives. Moreover, prevailing environmental conditions appeared to select for particular denitrifying populations, e.g., with respect to ammonium load and nitrogen removal efficiencies. This observation is of particular interest for the management of treatment wetlands, in which only slight variations in the theoretical denitrification potential of the system can occur.[Abstract] [Full Text] [Related] [New Search]