These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Order-disorder molecular model of the smectic-A-smectic-C phase transition in materials with conventional and anomalously weak layer contraction. Author: Gorkunov MV, Osipov MA, Lagerwall JP, Giesselmann F. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051706. PubMed ID: 18233672. Abstract: We develop a molecular-statistical theory of the smectic-A-smectic-C transition which is described as a transition of the order-disorder type. The theory is based on a general expansion of the effective interaction potential and employs a complete set of orientational order parameters. All the order parameters of the smectic-C phase including the tilt angle are calculated numerically as functions of temperature for a number of systems which correspond to different transition scenario. The effective interaction potential and the parameters of the transition are also calculated for specific molecular models based on electrostatic and induction interaction between molecular dipoles. The theory successfully reproduces the main properties of both conventional and so-called "de Vries-type" smectic liquid crystals, clarifies the origin of the anomalously weak layer contraction and describes the tricritical behavior at the smectic-A-smectic-C transition. The "de Vries behavior," i.e., anomalously weak layer contraction is also obtained for a particular molecular model based on interaction between longitudinal molecular dipoles. A simple phenomenological model is presented enabling one to obtain explicit expressions for the layer spacing and the tilt angle which are used to fit the experimental data for a number of materials.[Abstract] [Full Text] [Related] [New Search]