These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Author: Ho DM, Whitman M. Journal: Dev Biol; 2008 Mar 01; 315(1):203-16. PubMed ID: 18234181. Abstract: Xenopus tadpoles can fully regenerate all major tissue types following tail amputation. TGF-beta signaling plays essential roles in growth, repair, specification, and differentiation of tissues throughout development and adulthood. We examined the localization of key components of the TGF-beta signaling pathway during regeneration and characterized the effects of loss of TGF-beta signaling on multiple regenerative events. Phosphorylated Smad2 (p-Smad2) is initially restricted to the p63+ basal layer of the regenerative epithelium shortly after amputation, and is later found in multiple tissue types in the regeneration bud. TGF-beta ligands are also upregulated throughout regeneration. Treatment of amputated tails with SB-431542, a specific and reversible inhibitor of TGF-beta signaling, blocks tail regeneration at multiple points. Inhibition of TGF-beta signaling immediately following tail amputation reversibly prevents formation of a wound epithelium over the future regeneration bud. Even brief inhibition immediately following amputation is sufficient, however, to irreversibly block the establishment of structures and cell types that characterize regenerating tissue and to prevent the proper activation of BMP and ERK signaling pathways. Inhibition of TGF-beta signaling after regeneration has already commenced blocks cell proliferation in the regeneration bud. These data reveal several spatially and temporally distinct roles for TGF-beta signaling during regeneration: (1) wound epithelium formation, (2) establishment of regeneration bud structures and signaling cascades, and (3) regulation of cell proliferation.[Abstract] [Full Text] [Related] [New Search]