These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain.
    Author: Saha S, Ji L, de Pablo JJ, Palecek SP.
    Journal: Biophys J; 2008 May 15; 94(10):4123-33. PubMed ID: 18234825.
    Abstract:
    Cyclic biaxial mechanical strain has been reported to inhibit human embryonic stem cell differentiation without selecting against survival of differentiated or undifferentiated cells. We show that TGFbeta/Activin/Nodal signaling plays a crucial role in repression of human embryonic stem cell (hESC) differentiation under mechanical strain. Strain-induced transcription of TGFbeta1, Activin A, and Nodal, and upregulated Similar to Mothers Against Decapentaplegic homolog (Smad)2/3 phosphorylation in undifferentiated hESC. TGFbeta/Activin/Nodal receptor inhibitor SB431542 stimulated differentiation of hESCs cultured under biaxial strain. Exogenous addition of TGFbeta1, Activin A, or Nodal alone was insufficient to stimulate hESC self-renewal to replicate behavior of hESCs in presence of strain. However, exogenous TGFbeta1 and Activin A in combination partially replicated the self-renewing phenotype induced by strain but when combined with strain did not further stimulate self-renewal. In presence of mechanical strain, addition of a neutralizing antibody to TGFbeta1 promoted hESC differentiation whereas inhibition of Activin A by Follistatin promoted hESC differentiation to a lesser extent. Together, these findings show that TGFbeta superfamily activation of Smad2/3 is required for repression of spontaneous differentiation under strain and suggest that strain may induce autocrine or paracrine signaling through TGFbeta superfamily ligands.
    [Abstract] [Full Text] [Related] [New Search]