These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and start-up of a high rate anaerobic membrane bioreactor for the treatment of a low pH, high strength, dissolved organic waste water. Author: Van Zyl PJ, Wentzel MC, Ekama GA, Riedel KJ. Journal: Water Sci Technol; 2008; 57(2):291-5. PubMed ID: 18235185. Abstract: A Submerged Membrane Anaerobic Reactor (SMAR) is being developed for the treatment of waste water originating in Sasol's coal to fuel synthesis process. The laboratory-scale SMAR uses A4-size submerged flat panel ultrafiltration membranes to induce a 100% solids-liquid separation. Biogas gets extracted from the headspace above the anaerobic mixed liquor and reintroduced through a coarse bubble diffuser below the membranes. This induces a gas scour on the membranes that avoids biomass immobilization and membrane fouling. The substrate is a high strength (18 gCOD/l) petrochemical effluent consisting mostly of C2 to C6 short chain fatty acids with a low pH. Because of this, the pH of the reactor has to be controlled to a pH of 7.1. Organic Loading Rates of up to 25 kgCOD/m3 reactor volume/d has been observed with effluent COD normally <500 mgCOD/l and FSA <50 mgN/l with no particulates >0.45 microm at hydraulic retention times of 17 hours. 98% of the COD is converted to methane and the remainder to biomass. Mixed Liquor (MLSS) concentrations >30 gTSS/l can be maintained without deterioration of membrane fluxes, even though the Diluted Sludge Volume Index (DSVI) indicates that the sludge cannot be settled. No noteworthy deterioration in membrane performance has been observed over the 320 day operational period.[Abstract] [Full Text] [Related] [New Search]