These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Author: Chanseaume E, Bielicki G, Tardy AL, Renou JP, Freyssenet D, Boirie Y, Morio B.
    Journal: Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558.
    Abstract:
    OBJECTIVE: Mitochondrial activity is altered in skeletal muscle of obese, insulin-resistant or type 2 diabetic patients. We hypothesized that this situation was associated with profound adaptations in resting muscle energetics. For that purpose, we used in vivo (31)P-nuclear magnetic resonance ((31)P-NMR) in male sedentary Wistar rats fed with obesogenic diets known to induce alterations in muscle mitochondrial activity. METHODS AND PROCEDURES: Two experimental diets (high sucrose and high fat) were provided for 6 weeks at two levels of energy (standard, N and high, H) and compared to control diet. The rates of the adenosine triphosphate (ATP) exchange between phosphocreatine (PCr) and gamma-ATP (k(a)) and beta-adenosine diphosphate (beta-ADP) to beta-ATP (k(b)) were evaluated using (31)P-NMR in resting gastrocnemius muscle. Muscle contents in phosphorylated compounds as well as creatine, were assessed using (31)P-NMR and biochemical assays, respectively. RESULTS: ATP content increased by 6.7-8.5% in standard-energy high-sucrose (NSU), high-energy high-fat (HF) and high-energy high-sucrose (HSU) groups compared to control (P < 0.05), whereas PCr content decreased by 4.2-6.4% (P < 0.01). Consequently, PCr to ATP ratio decreased in NSU, HF, and HSU groups, compared to control (P < 0.01). Furthermore in high-energy groups (HF and HSU) compared to control, creatine contents were decreased by 14-19% (P < 0.001), whereas k(a) and k(b) fluxes were increased by 89-133% (P < 0.001) and 243-277% (P < 0.01), respectively. DISCUSSION: Our in vivo data showed adaptations of resting skeletal muscle energetics in response to high-energy diets. Increased activity of enzymes catalyzing ATP production may reflect a compensatory mechanism to face impaired mitochondrial ATP synthesis in order to preserve intracellular energy homeostasis.
    [Abstract] [Full Text] [Related] [New Search]