These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis.
    Author: Nagasaka T, Goel A, Notohara K, Takahata T, Sasamoto H, Uchida T, Nishida N, Tanaka N, Boland CR, Matsubara N.
    Journal: Int J Cancer; 2008 Jun 01; 122(11):2429-36. PubMed ID: 18240147.
    Abstract:
    O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair gene which is frequently methylated in colorectal cancer (CRC). However, it remains controversial whether methylation of specific CpG sequences within MGMT promoter leads to loss of its protein expression, and if MGMT methylation correlates with G to A transition mutations in KRAS. Two methylation sensitive regions (Mp and Eh region) of MGMT promoter were investigated in 593 specimens of colorectal tissue: 233 CRCs, 104 adenomatous polyps (AP), 220 normal colonic mucosa from CRC patients (N-C) and 36 normal colonic mucosa specimens obtained from subjects without colorectal neoplasia (N-N) by combined bisulfite restriction analysis (COBRA). The region-specific methylation data were compared to the MGMT protein expression, spectrum of KRAS mutations and other clinical features. Extensive (including both Mp and Eh) and partial (either Mp or Eh) MGMT methylation were found in 24.5% and 11.6% of CRCs, 3.8% and 27.9% of APs, 0.5% and 7.7% of C-Ns and 2.8% and 2.8% of N-Ns, respectively. Extensive methylation of MGMT promoter was primarily present in CRCs while partial methylation was common in APs. Extensive methylation of MGMT promoter was associated with loss/reduced protein expression (p < 0.0001), as well as with G to A mutations in KRAS (p = 0.0017). We herein provide first evidence that extensive methylation of MGMT promoter region is essential for methylation-induced silencing of this gene. Our data suggest that MGMT methylation may evolve and spread throughout the promoter in a stepwise manner as the colonic epithelial cells progress through the classical-adenoma-cancer multistep cascade.
    [Abstract] [Full Text] [Related] [New Search]