These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: What are the biochemical mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice?
    Author: Carley AN, Severson DL.
    Journal: Cardiovasc Drugs Ther; 2008 Apr; 22(2):83-9. PubMed ID: 18247111.
    Abstract:
    INTRODUCTION: It is generally accepted that diabetic hearts have an altered metabolic phenotype, with enhanced fatty acid (FA) utilization. The over-utilization of FA by diabetic hearts can have deleterious functional consequences, contributing to a distinct diabetic cardiomyopathy. The objective of this review will be to examine which biochemical mechanisms are responsible for enhanced FA utilization by diabetic hearts. METHODOLOGY AND RESULTS: Studies were performed with db/db mice, a monogenic model of type 2 diabetes with extreme obesity and hyperglycemia. Perfused db/db hearts exhibit enhanced FA oxidation and esterification. Hypothesis 1: Cardiac FA uptake is enhanced in db/db hearts. The plasma membrane content of two FA transporters, fatty acid translocase/CD36 (FAT/CD36) and plasma membrane fatty acid binding protein (FABPpm), was increased in db/db hearts, consistent with hypothesis 1. Hypothesis 2: Cardiac FA oxidation is enhanced in db/db hearts due to mitochondrial alterations. However, the activity of carnitine palmitoyl transferase-1 (CPT-1) and sensitivity to inhibition by malonyl CoA was unchanged in mitochondria from db/db hearts. Furthermore, total malonyl CoA content was increased, not decreased as predicted for elevated FA oxidation. Finally, the content of uncoupling protein-3 was unchanged in db/db heart mitochondria. CONCLUSION: Increased plasma membrane content of FA transporters (FAT/CD36 and FABPpm) will increase FA uptake into db/db cardiomyocytes and thus increase FA utilization. On the other hand, mitochondrial mechanisms do not contribute to elevated rates of FA oxidation in db/db hearts.
    [Abstract] [Full Text] [Related] [New Search]